Teaching materials Deliverable 1. Static Burnishing Analysis

MISCE project

Mechatronics for Improving and Standardizing Competences in Engineering

Competence: Mechanical systems

Workgroup: RzuT, UNICA, UCLM, UNICAS

This document corresponds to the first burnishing exercise for the competence 'Mechanical Systems'. 'Exercise 1 - Static Burnishing Analysis'

Version: 1.0

Date: December 6th, 2024

Visit https://misceproject.eu/ for more information.

Document:

Mechanical Systems Deliverable 1. Static Burnishing Analysis

Index of contents

11100	on our contioned	
1 Sta	atic Burnishing of a Shaft During Rotation	2
1.1	Objective of the Exercise	2
1.2	Task Description	2
1.3	Expected Results	3
Inde	ex of figures	
Fig. 1 Main menu		
Fig. 2 Static burnishing menu		3

1 Static Burnishing of a Shaft During Rotation

1.1 Objective of the Exercise

- Investigate the influence of indentation force on the depth of indentation and the surface quality of a rotating aluminium shaft.
- Compare the results for two different values of indentation force.

1.2 Task Description

- 1. The teacher mounts the aluminum shaft on the lathe and sets its rotational speed (n), ensuring a uniform rotation.
- 2. The indentation (burnishing) process involves statically pressing the ball indenter head (diameter s = 3 mm) against the rotating shaft.
- 3. Perform two experiments over one full rotation of the shaft:
 - a. On the HMI, select the Static option (Fig. 1, 1) to initialize the static burnishing process.
 - b. Use the slider (Fig. 2, 1) to set the maximum pressing force.
 - c. Enable the motor by ticking the Enable Motor checkbox (Fig. 2, 2).
 - d. Use the Left and Right buttons (Fig. 2, 3) to move the burnisher head toward the aluminum shaft.
 - e. When the pressing force reaches the set maximum, the servo automatically stops.

Fig. 1 Main menu

Fig. 2 Static burnishing menu

- 4. After completing the indentation process, the teacher will stop the lathe and retract the burnisher. Then measure:
 - o The average depth of indentation (δ),
 - Surface quality (e.g., roughness) using a profilometer.
- 5. Carry out two cases:
 - o Case 1: Indentation with force F_1 ,
 - Case 2: Indentation with a higher force F_2 .
- 6. Perform calculations according to the previously presented theory:
 - Diameter of indentation:

$$d = \sqrt{\frac{0.408F}{\pi D \text{ HB}} - \left(\frac{0.204F}{\pi D \text{ HB}}\right)^2},$$

Depth of indentation:

$$\delta = R - \sqrt{R^2 - \left(\frac{d}{2}\right)^2}.$$

7. Based on the results of the calculations, compare the impact of forces F_1 and F_2 on the depth of indentation and surface uniformity.

1.3 Expected Results

- Comparison of results for two values of indentation force (F_1 and F_2).
- Graphs showing the relationship between indentation depth and indentation force.
- Assessment of the shaft surface quality after the indentation process.